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Concerns about sustainability in agricultural systems centre on the need to develop technologies and
practices that do not have adverse effects on environmental goods and services, accessible to and
effective for farmers and lead to improvements in food productivity. Despite great progress in
agricultural productivity in the past half-century, with crop and livestock productivity strongly driven
by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would
be over-optimistic to assume that these relationships will remain linear in the future. New approaches
are needed that will integrate biological and ecological processes into food production, minimize the
use of those non-renewable inputs that cause harm to the environment or to the health of farmers and
consumers, make productive use of the knowledge and skills of farmers, so substituting human capital
for costly external inputs and make productive use of people’s collective capacities to work together to
solve common agricultural and natural resource problems, such as for pest, watershed, irrigation,
forest and credit management.

These principles help to build important capital assets for agricultural systems: natural; social;
human; physical; and financial capital. Improving natural capital is a central aim, and dividends can
come from making the best use of the genotypes (G) of crops and animals and the ecological (Ec)
conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both
genotype improvements through the full range of modern biological approaches and improved
understanding of the benefits of ecological and agronomic management, manipulation and redesign.
The ecological management of agroecosystems that addresses energy flows, nutrient cycling,
population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a
landscape scale. Sustainable agriculture outcomes can be positive for food productivity, reduced
pesticide use and carbon balances. Significant challenges, however, remain to develop national and
international policies to support the wider emergence of more sustainable forms of agricultural
production across both industrialized and developing countries.

Keywords: environmental goods and services; natural capital; social capital; agroecology;
carbon sequestration; pesticides
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1. THE CONTEXT FOR AGRICULTURAL
SUSTAINABILITY
The interest in the sustainability of agricultural and
food systems can be traced to environmental concerns
that began to appear in the 1950s–1960s. However,
ideas about sustainability date back at least to the oldest
surviving writings from China, Greece and Rome
(Cato 1979; Hesiod 1988; Conway 1997; Li Wenhua
2001; Pretty 2002; 2005a). Today, concerns about
sustainability centre on the need to develop agricultural
technologies and practices that: (i) do not have adverse
effects on the environment (partly because the
environment is an important asset for farming), (ii)
are accessible to and effective for farmers, and (iii) lead
to both improvements in food productivity and have
positive side effects on environmental goods and
services. Sustainability in agricultural systems incor-
porates concepts of both resilience (the capacity of
systems to buffer shocks and stresses) and persistence
(the capacity of systems to continue over long periods)
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and addresses many wider economic, social and
environmental outcomes.

In recent decades, there has been remarkable growth
in agricultural production, with increases in food
production across the world since the beginning of
the 1960s. Since then, aggregate world food production
has grown by 145%. In Africa, it rose by 140%, in Latin
America by almost 200% and in Asia by 280%. The
greatest increases have been in China, where a fivefold
increase occurred, mostly during the 1980s–1990s. In
industrialized countries, production started from a
higher base; yet it still doubled in the USA over 40 years
and grew by 68% in Western Europe (FAO 2005).

Over the same period, world population has grown
from three to more than six billion imposing an
increasing impact on the human footprint on the
Earth as consumption patterns change (Kitzes et al.
2007; Pretty 2007). Again, though, per capita agricul-
tural production has outpaced population growth
(Hazell & Wood 2007), for each person today, there
is an additional 25% more food compared with 1960.
These aggregate figures, though, hide important
regional differences. In Asia and Latin America, per
capita food production increased by 76 and 28%,
0
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Figure 1. Rural and urban world population (1950–2030;
from UN (2005)).
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respectively. Africa, though, has fared badly with food

production per person 10% lower today than in 1960.
China, again, performs best, with a trebling of per capita
food production over the same period. These agricul-

tural production gains have lifted millions out of

poverty and provided a platform for rural and urban

economic growth in many parts of the world.

However, these advances in aggregate productivity
have not brought reductions in the incidence of hunger

for all. In the early twenty-first century, there are still

more than 800 million people hungry and lacking

adequate access to food. A third are in East and

Southeast Asia, another third in South Asia, a quarter

in sub-Saharan Africa and 5% each in Latin America/
Caribbean and in North Africa/Near East. None-

theless, there has been progress, as incidence of

undernourishment was 960 million in 1970, compris-

ing a third of all people in developing countries at

the time.

Despite this progress in food output, it is probable
that food-related ill health will remain widespread for

many people. As world population continues to

increase, until at least the mid-twenty-first century

(UNPD 2005), the absolute demand for food will also

increase. Increasing incomes will also mean that people
will have more purchasing power and this will increase

the demand for food. But as diets change, demand for

the types of food will also shift radically, with large

numbers of people going through the nutrition

transition. In particular, increasing urbanization

(figure 1) means people are more likely to adopt new
diets, particularly consuming more meat, fats and

refined cereals, and fewer traditional cereals, vegetables

and fruits (Popkin 1998).

As a result of these transitions towards calorie-rich

diets, obesity, hypertension and type II diabetes have

emerged as serious threats to health in most industrial-
ized countries (Popkin 1998; WHO 1998; Nestle 2003;

Lang & Heasman 2004). A total of 20–25% of adults

across Europe and North America are now classed as

clinically obese (body mass index greater than

30 kg mK2). In some developing countries, including
Brazil, Colombia, Costa Rica, Cuba, Chile, Ghana,

Mexico, Peru and Tunisia, overweight people now
RSTB 20072163—25/6/2007—21:06—THIAGU—278760—XML RSB – pp.
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outnumber the hungry (WHO 1998). Diet-related

illness now has severe and costly public health
consequences (Kenkel & Manning 1999; Ferro Luzzi

and James 2000). According to the comprehensive

Eurodiet (2001) study, ‘disabilities associated with high
intakes of saturated fat and inadequate intakes of

vegetable and fruit, together with a sedentary lifestyle,
exceed the cost of tobacco use’. Some problems arise

from nutritional deficiencies of iron, iodide, folic acid,
vitamin D and omega-3 polyunsaturated fatty acids,

but most are due to excess consumption of energy and

fat (causing obesity), sodium as salt (high blood
pressure), saturated and trans fats (heart disease) and

refined sugars (diabetes and dental caries; Key et al.
2002; Frumkin 2005).

An important change in the world food system will

come from the increased consumption of livestock
products (Fitzhugh 1998; Delgado et al. 1999; Smil

2000). Meat demand is expected to rise rapidly with
economic growth and this will change many farming

systems. Livestock are important in mixed production
systems, using foods and by-products that would not

have been consumed by humans. But increasingly

animals are raised intensively and fed with cheap
though energetically inefficient cereals and oils. In

industrialized countries, 73% of cereals are fed to
animals; in developing countries, some 37% are used in

this way. Currently, per capita annual demand in

industrialized countries is 550 kg of cereal and 78 kg
of meat. By contrast, in developing countries, it is only

260 kg of cereal and 30 kg of meat.
At the same time as these recent changes in

agricultural productivity, consumer behaviour over
food (Smith in press) and the political economy of

farming and food (Goodman & Watts 1997), agricul-

tural systems are now recognized to be a significant
source of environmental harm (Tilman 1999; Pretty et
al. 2000; MEA 2005). Since the early 1960s, the total
agricultural area has expanded by 11% from 4.5 to 5

billion ha and arable area from 1.27 to 1.4 billion ha. In

industrialized countries, agricultural area has fallen by
3%, but has risen by 21% in developing countries

(figure 2a). Livestock production has also increased
with a worldwide fourfold increase in numbers of

chickens, twofold increase in pigs and 40–50% increase
in numbers of cattle, sheep and goats (figure 2b).

During this period, the intensity of production on

agricultural lands has also risen substantially (Hazell &
Wood 2007). The area under irrigation and number of

agricultural machines has grown by approximately
twofold and the consumption of all fertilizers by

fourfold (nitrogen fertilizers by sevenfold;

figure 2c,d ). The use of pesticides in agriculture has
also increased dramatically and now amounts to some

2.56 billion kg yrK1. In the early twenty-first century,
the annual value of the global market was US $25

billion, of which some $3 billion of sales was in

developing countries (Pretty 2005b). Herbicides
account for 49% of use, insecticides 25%, fungicides

22% and others approximately 3% (table 1). A third of
the world market by value is in the USA, which

represents 22% of active ingredient use. In the USA,
though, large amounts of pesticide are used in the
1–20
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Figure 2. (a) Agricultural area (1961–2002; from FAO (2005)). (b) Head of livestock, world (1961–2004; from FAO (2005)).
(c) Irrigated area and agricultural machinery, world (1961—2002; from FAO (2005)). (d ) World fertilizer consumption
(1961–2002; from FAO (2005)).

Table 1. World and US use of pesticide active ingredients
(mean for 1998–1999). (Adapted from Pretty & Hine (2005);
using EPA (2001) and OECD (2001).)

pesticide use

world
pesticide use
(million kg a.i.) %

US pesticide
use (million
kg a.i.) %

herbicides 948 37 246 44
insecticides 643 25 52 9
fungicides 251 10 37 7
othera 721 28 219b 40
total 2563 100 554 100

a Other includes nematicides, fumigants, rodenticides, molluscicides,
aquatic and fish/bird pesticides, and other chemicals used as pesticides
(e.g. sulphur, petroleum products).
b Other in the US includes 150 million kg of sulphur, petroleum used
as pesticides.
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home/garden (17% by value) and in industrial,

commercial and government settings (13% by value).

These factors of production have had a direct impact

on world food production (figure 3a–e). There are clear

and significant relationships between fertilizer con-

sumption, number of agricultural machines, irrigated

area, agricultural land area and arable area with total

world food production (comprising all cereals, coarse

grains, pulses, roots and tubers, and oil crops). The

inefficient use of some of these inputs has, however, led

to considerable environmental harm. Increased agri-

cultural area contributes substantially to the loss of

habitats, associated biodiversity and their valuable

environmental services (MEA 2005; Scherr &

McNeely 2007). Approximately 30–80% of nitrogen

applied to farmland escapes to contaminate water

systems and the atmosphere as well as increasing the

incidence of some disease vectors (Smil 2001; Victor &

Reuben 2002; Pretty et al. 2003a; Townsend et al.

2003; Giles 2005; Goulding et al. 2007). Irrigation

water is often used inefficiently and causes water-

logging and salinization, as well as diverts water from

other domestic and industrial users; and agricultural

machinery has increased the consumption of fossil fuels

in food production (Leach 1976; Stout 1998).
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These graphs clearly show the past effectiveness of
these factors of production in increasing agricultural
productivity. One argument is to suggest that the
persistent world food crisis indicates a need for
substantially greater use of these inputs (Avery 1995;
Cassman et al. 2002; Trewevas 2002; Green et al. 2005;
Tripp in press). But it would be both simplistic and
optimistic to assume that all these relationships will
remain linear in the future and that gains will continue
0
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at the previous rates (Tilman 1999). This would
assume a continuing supply of these factors and inputs,
and that the environmental costs of their use will be
small. There is also growing evidence to suggest that
this approach to agricultural growth has reached
critical environmental limits, and that the aggregate
costs in terms of lost or foregone benefits from
environmental services are too great for the world to
bear (Ruttan 1999; MEA 2005; Kitzes et al. 2007).
The costs of these environmental problems are often
called externalities as they do not appear in any formal
accounting systems. Yet many agricultural systems
themselves are now suffering because key natural assets
that they require to be plentiful are being undermined
or diminished.

Agricultural systems in all parts of the world will
have to make improvements. In many, the challenge is
to increase the food production to solve immediate
problems of hunger. In others, the focus will be more
on adjustments that maintain food production while
increasing the flow of environmental goods and
services. World population is set to continue to increase
for approximately another 40 years to approximately
2040–2050, and then is likely to stabilize or fall
owing to changes in fertility patterns (figure 4). The
RSTB 20072163—25/6/2007—21:06—THIAGU—278760—XML RSB – pp.
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high-fertility projection by the UN (2005) is unlikely to
arise, as shifts towards lower fertility are already
occurring in many countries worldwide and so there
are very real prospects of world population eventually
falling over one to two centuries after the maximum is
reached. This suggests that the agricultural and food
1–20
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2. WHAT IS SUSTAINABLE AGRICULTURE?
What, then, do we now understand by agricultural
sustainability? Many different expressions have come to
be used to imply greater sustainability in some
agricultural systems over prevailing ones (both pre-
industrial and industrialized). These include biody-
namic, community based, ecoagriculture, ecological,
environmentally sensitive, extensive, farm fresh, free
range, low input, organic, permaculture, sustainable
and wise use (Pretty 1995; Conway 1997; NRC 2000;
McNeely & Scherr 2003; Clements & Shrestha 2004;
Cox et al. 2004; Gliessman 2005). There is continuing
and intense debate about whether agricultural systems
using some of these terms can qualify as sustainable
(Balfour 1943; Lampkin & Padel 1994; Altieri 1995;
Trewevas 2002).

Systems high in sustainability can be taken as those
that aim to make the best use of environmental goods
and services while not damaging these assets (Altieri
1995; Pretty 1995, 1998, 2005a,b; Conway 1997;
Hinchcliffe et al. 1999; NRC 2000; Li Wenhua 2001;
Jackson & Jackson 2002; Tilman et al. 2002; Uphoff
2002; McNeely & Scherr 2003; Gliessman 2004, 2005;
Swift et al. 2004; Tomich et al. 2004; MEA 2005;
Scherr & McNeely 2007; Kesevan & Swaminathan in
press). The key principles for sustainability are to:

(i) integrate biological and ecological processes
such as nutrient cycling, nitrogen fixation, soil
regeneration, allelopathy, competition, preda-
tion and parasitism into food production
processes,

(ii) minimize the use of those non-renewable inputs
that cause harm to the environment or to the
health of farmers and consumers,

(iii) make productive use of the knowledge and skills
of farmers, thus improving their self-reliance
and substituting human capital for costly
external inputs, and

(iv) make productive use of people’s collective
capacities to work together to solve common
agricultural and natural resource problems,
such as for pest, watershed, irrigation, forest
and credit management.

The idea of agricultural sustainability, though, does
not mean ruling out any technologies or practices on
ideological grounds. If a technology works to improve
productivity for farmers and does not cause undue
harm to the environment, then it is likely to have some
sustainability benefits. Agricultural systems emphasiz-
ing these principles also tend to be multifunctional
within landscapes and economies (Dobbs & Pretty
2004; MEA 2005). They jointly produce food and
other goods for farmers and markets, but also
contribute to a range of valued public goods, such as
clean water, wildlife and habitats, carbon sequestra-
tion, flood protection, groundwater recharge, land-
scape amenity value and leisure/tourism. In this way,
RSTB 20072163—25/6/2007—21:06—THIAGU—278760—XML RSB – pp. 1–2
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sustainability can be seen as both relative and case
dependent and implies a balance between a range of
agricultural and environmental goods and services.

As a more sustainable agriculture seeks to make the
best use of nature’s goods and services, technologies
and practices must be locally adapted and fitted to
place. These are most likely to emerge from new
configurations of social capital, comprising relations of
trust embodied in new social organizations, new
horizontal and vertical partnerships between insti-
tutions, and human capital comprising leadership,
ingenuity, management skills and capacity to innovate.
Agricultural systems with high levels of social and
human assets are more able to innovate in the face of
uncertainty (Chambers et al. 1989; Uphoff 1998;
Bunch & Lopez 1999; Olsson & Folke 2001; Pretty &
Ward 2001). This suggests that there likely to be
many pathways towards agricultural sustainability,
and further implies that no single configuration of
technologies, inputs and ecological management is
more likely to be widely applicable than the other.
Agricultural sustainability implies the need to fit these
factors to the specific circumstances of different
agricultural systems.

A common, though erroneous, assumption about
agricultural sustainability is that it implies a net
reduction in input use, thus making such systems
essentially extensive (they require more land to produce
the same amount of food). Recent empirical evidence
shows that successful agricultural sustainability initiat-
ives and projects arise from shifts in the factors of
agricultural production (e.g. from use of fertilizers to
nitrogen-fixing legumes; from pesticides to emphasis
on natural enemies; from ploughing to zero-tillage).
A better concept than extensive is one that centres on
intensification of resources, making better use of
existing resources (e.g. land, water, biodiversity) and
technologies (Conway & Pretty 1991; Pretty et al.
2000; Buttel 2003; Tegtmeier & Duffy 2004). The
critical question centres on the ‘type of intensification’.
Intensification using natural, social and human
capital assets, combined with the use of best
available technologies and inputs (best genotypes
and best ecological management) that minimize or
eliminate harm to the environment, can be termed
‘sustainable intensification’.
3. CAPITAL ASSETS FOR AGRICULTURAL
SYSTEMS
What makes agriculture unique as an economic sector
is that it directly affects many of the very assets on
which it relies for success. Agricultural systems at all
levels rely on the value of services flowing from the total
stock of assets that they influence and control, and five
types of asset, natural, social, human, physical and
financial capital, are now recognized as being import-
ant. There are, though, some advantages and misgiv-
ings with the use of the term capital. On the one hand,
capital implies an asset, and assets should be cared for,
protected and accumulated over long periods. On the
other hand, capital can imply easy measurability and
transferability. Since the value of something can be
assigned a monetary value, then it can appear not to
0
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matter if it is lost, as the required money could simply
be allocated to purchase another asset or to transfer it
from elsewhere. But nature and its wider values is not
so easily replaceable as a commodity (Coleman 1988;
Ostrom 1990; Putnam et al. 1993; Flora & Flora 1996;
Benton 1998; Scoones 1998; Uphoff 1998, 2002;
Costanza et al. 1999; Pretty 2003). Nonetheless,
terms such as natural, social and human capital are
useful in helping to shape concepts around basic
questions such as what is agriculture for and what
system works best. The five capitals are defined in the
following ways:

(i) Natural capital produces environmental goods
and services and is the source of food (both
farmed and harvested or caught from the wild),
wood and fibre; water supply and regulation;
treatment, assimilation and decomposition of
wastes; nutrient cycling and fixation; soil
formation; biological control of pests; climate
regulation; wildlife habitats; storm protection
and flood control; carbon sequestration; polli-
nation; and recreation and leisure (Costanza
et al. 1999; MEA 2005).

(ii) Social capital yields a flow of mutually beneficial
collective action, contributing to the cohesive-
ness of people in their societies. The social assets
comprising social capital include norms, values
and attitudes that predispose people to co-
operate; relations of trust, reciprocity and
obligations; and common rules and sanctions
mutually agreed or handed down. These are
connected and structured in networks and
groups (Flora & Flora 1996; Cramb & Culasero
2003; Pretty 2003).

(iii) Human capital is the total capability residing in
individuals, based on their stock of knowledge
skills, health and nutrition (Orr 1992; Byerlee
1998; Leeuwis 2004; Lieblin et al. 2004). It isQ8

enhanced by access to services that provide,
such as schools, medical services and adult
training. People’s productivity is increased by
their capacity to interact with productive
technologies and other people. Leadership and
organizational skills are particularly important
in making other resources more valuable.

(iv) Physical capital is the store of human-made
material resources and comprises buildings such
as housing and factories, market infrastructure,
irrigation works, roads and bridges, tools and
tractors, communications and energy and trans-
portation systems, that make labour more
productive.

(v) Financial capital is more of an accounting
concept, as it serves as a facilitating role rather
than as a source of productivity in and of itself. It
represents accumulated claims on goods and
services, built up through financial systems that
gather savings and issue credit such as pensions,
remittances, welfare payments, grants and
subsidies.

As agricultural systems shape the very assets on
which they rely for inputs, a vital feedback loop occurs
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from outcomes to inputs (Worster 1993). Thus,
sustainable agricultural systems tend to have a positive
effect on natural, social and human capital, while
unsustainable ones feedback to deplete these assets,
leaving fewer for future generations. For example, an
agricultural system that erodes soil while producing
food externalizes costs that others must bear. But one
that sequesters carbon in soils through organic matter
accumulation helps to mediate climate change. Simi-
larly, a diverse agricultural system that enhances
on-farm wildlife for pest control contributes to wider
stocks of biodiversity, while simplified modernized
systems that eliminate wildlife do not. Agricultural
systems that offer labour-absorption opportunities,
through resource improvements or value-added activi-
ties, can boost local economies and help to reverse
rural-to-urban migration patterns (Carney 1998;
Dasgupta 1998; Ellis 2000; Morison et al. 2005; Pretty
et al. 2006).

Any activities that lead to improvements in these
renewable capital assets thus make a contribution
towards sustainability. However, agricultural sustain-
ability does not require that all assets are improved at
the same time. One agricultural system that contributes
more to these capital assets than the other can be said to
be more sustainable, but there may still be trade-offs
with one asset increasing as the other falls. In practice,
though, there are usually strong links between changes
in natural, social and human capital (Pretty 2003),
with agricultural systems having many potential effects
on all three.

Agriculture is, therefore, fundamentally multifunc-
tional. It jointly produces many unique non-food
functions that cannot be produced by other economic
sectors so efficiently. Clearly, a key policy challenge, for
both industrialized and developing countries, is to find
ways to maintain and enhance food production. But a
key question is: can this be done while seeking to both
improve the positive side effects and eliminate the
negative ones? It will not be easy, as past agricultural
development has tended to ignore both the multi-
functionality of agriculture and the considerable
external costs.
4. SIDE EFFECTS AND EXTERNALITIES
There are surprisingly few data on the environmental
and health costs imposed by agriculture on other
sectors and interests. Agriculture can negatively affect
the environment through overuse of natural resources
as inputs or their use as a sink for pollution. Such
effects are called negative externalities because they are
usually non-market effects and therefore their costs are
not part of market prices. Negative externalities are one
of the classic causes of market failure whereby the
polluter does not pay the full costs of their actions,
and therefore these costs are called external costs
(Baumol & Oates 1988; Pretty et al. 2000, 2003a;
Dobbs & Pretty 2004; Moss 2007).

Externalities in the agricultural sector have at least
four features: (i) their costs are often neglected, (ii) they
often occur with a time lag, (iii) they often damage
groups whose interests are not well represented in
political or decision-making processes, and (iv) the
1–20
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identity of the source of the externality is not always
known. For example, farmers generally have few
incentives to prevent some pesticides escaping to
water bodies, to the atmosphere and to nearby natural
systems as they transfer the full cost of cleaning up the
environmental consequences to society at large. In the
same way, pesticide manufacturers do not pay the full
cost of all their products, as they do not have to pay for
any adverse side effects that may occur.

Partly as a result of lack of information, there is little
agreement on the economic costs of externalities in
agriculture. Some authors suggest that the current
system of economic calculations grossly underesti-
mates the current and future value of natural capital
(Abramovitz 1997; Costanza et al. 1997; Daily 1997;
MEA 2005). However, such valuation of ecosystem
services remains controversial owing to methodological
and measurement problems (Georgiou et al. 1998;
Hanley et al. 1998; Carson 2000; Farrow et al. 2000;
Pretty et al. 2003a) and the role monetary values have
in influencing public opinions and policy decisions.

What has become clear in recent years is that the
success of modern agriculture has masked some
significant negative externalities, with environmental
and health problems documented and recently costed
for Ecuador, China, Germany, the Philippines, the UK
and the USA (Pingali & Roger 1995; Crissman et al.
1998; Waibel et al. 1999; Pretty et al. 2000, 2001, 2003a,
2005; Cuyno et al. 2001; Norse et al. 2001; Buttel 2003;
Tegtmeier & Duffy 2004; Sherwood et al. 2005; Zhao
et al. in press). These environmental costs begin to
change conclusions about which agricultural systems
are the most efficient and suggest that alternatives which
reduce externalities should be sought.

Examples of costs in developing countries include
that in the Philippines, where agricultural systems that
do not use pesticides result in greater net social benefits
owing to the reduction in illnesses among farmers
and their families, and the associated treatment costs
(Rola & Pingali 1993; Pingali & Roger 1995). In
China, the externalities of pesticides used in rice
systems cause $1.4 billion of costs per year through
health costs to people, and adverse effects on both on-
and off-farm biodiversity (Norse et al. 2001). In
Ecuador, annual mortality in the remote highlands
due to pesticides is among the highest reported
anywhere in the world at 21 people per 100 000
people, and so the economic benefits of integrated
pest management (IPM)-based systems that eliminate
these effects are increasingly beneficial (Sherwood et al.
2005). In the UK, agricultural externalities have been
calculated to be some £1.5 billion per year in the late
1990s, a cost that is greater than net farm income
(Pretty et al. 2000, 2001). These, though, are exceeded
by the environmental costs of transporting food from
farm to retail outlet to place of consumption—these
‘food miles’ in the UK result in a further £3.8 billion of
environmental costs per year (Pretty et al. 2005).

These data suggest that all types of agricultural
systems impose some kinds of costs on the environ-
ment. It is, therefore, impossible to draw a boundary
between what is sustainable and what is not. If the
external costs are high and can be reduced by the
adoption of new practices and technologies, then this is
RSTB 20072163—25/6/2007—21:06—THIAGU—278760—XML RSB – pp. 1–2
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a move towards sustainability. Agricultural sustain-
ability is thus partly a matter of judgement, which in
turn depends on the comparators and baselines chosen.
One system may be said to be more sustainable relative
to another if its negative externalities are lower.
Monetary criteria do, though, only capture some of
the values of agricultural systems and the resources
upon which they impinge (Carson 2000), and so
choices may depend on wider questions about the
sustainability of farm practices (on farm, in field) and
the sustainability of whole landscapes (interactions
between agricultural and wild habitats; Green et al.
2005; Shennan in press; Waage & Mumford in press;
Wade et al. in press).
5. IMPROVING NATURAL CAPITAL FOR
AGROECOSYSTEMS
Agricultural sustainability emphasizes the potential
benefits that arise from making the best use of both
genotypes of crops and animals and their agroecologi-
cal management. Agricultural sustainability does not,
therefore, mean ruling out any technologies or
practices on ideological grounds (e.g. genetically
modified or organic crops)—provided they improve
biological and/or economic productivity for farmers
and do not harm the environment (NRC 2000; Pretty
2001; Uphoff 2003; Nuffield Council on Bioethics
2004). Agricultural sustainability, therefore, empha-
sizes the potential dividends that can come from
making the best use of the genotypes (G) of crops
and animals (Dennis et al. 2007; Shennan in press;
Witcombe et al. in press) and the ecological (Ec)
conditions under which they are grown or raised. The
outcome is a result of this G!Ec interaction (Khush
et al. 1998). Agricultural sustainability suggests a focus
on both genotype improvements through the full range
of modern biological approaches, as well as improved
understanding of the benefits of ecological and
agronomic management, manipulation and redesign
(Collard & Mackill 2007; Flint & Wooliams 2007;
Thomson in press).

Agricultural systems, or agroecosystems, are
amended ecosystems (Conway 1985; Gliessman
1998, 2005; Olsson & Folke 2001; Dalgaard et al.
2003; Odum & Barrett 2004; Swift et al. 2004) that
have a variety of different properties (table 2). Modern
agricultural systems have amended some of these
properties to increase productivity. Sustainable agroe-
cosystems, by contrast, have to seek to shift some of
these properties towards natural systems without
significantly trading off productivity. Modern agroeco-
systems have, for example, tended towards high
through-flow systems, with energy supplied by fossil
fuels directed out of the system (either deliberately for
harvests or accidentally through side effects). For a
transition towards sustainability, renewable sources of
energy need to be maximized and some energy flows
directed to fuel essential internal tropic interactions
(e.g. to soil organic matter or to weeds for arable
birds) so as to maintain other ecosystem functions
(Rydberg & Jansén 2002; Champion et al. 2003; Haberl
et al. 2004; Firbank et al. 2005, in press). All annual
0
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Table 2. Properties of natural ecosystems compared with modern and sustainable agroecosystems. (Adapted from Gliessman
(2005).)

property natural ecosystem modern agroecosystem sustainable agroecosystem

productivity medium high medium (possibly high)
species diversity high low medium
functional diversity high low medium–high
output stability medium low–medium high
biomass accumulation high low medium–high
nutrient recycling closed open semi-closed
trophic relationships complex simple intermediate
natural population regulation high low medium–high
resilience high low medium
dependence on external inputs low high medium
human displacement of ecological processes low high low–medium
sustainability high low high
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crops, though, are derived from opportunists and so

their resource use is inherently different to perennials.

Modern agriculture has also come to rely heavily of

nutrient inputs obtained from or driven by fossil fuel-

based sources. Nutrients are also used inefficiently and

together with certain products (e.g. ammonia, nitrate,

methane, carbon dioxide) are lost to the environment.

For sustainability, nutrient leaks need to be reduced to

a minimum, recycling and feedback mechanisms

introduced and strengthened, and nutrients and

materials diverted to capital accumulation. Agroeco-

systems are considerably more simplified than natural

ecosystems, and loss of biological diversity (to improve

crop and livestock productivity) results in the loss of

some ecosystem services, such as pest and disease

control (Gallagher et al. 2005). For sustainability,

biological diversity needs to be increased to recreate

natural control and regulation functions and to manage

pests and diseases rather than seeking to eliminate

them. Mature ecosystems are now known to be not

stable and unchanging, but in a state of dynamic

equilibrium that buffers against large shocks and

stresses. Modern agroecosystems have weak resilience,

and for transitions towards sustainability need to focus

on structures and functions that improve resilience

(Holling et al. 1998; Folke et al. 2005; Shennan

in press).

But converting an agroecosystem to a more sustain-

able design is complex, and generally requires a

landscape or bioregional approach to restoration or

management (Kloppenburg et al. 1996; Higgs 2003;

Jordan 2003; Odum & Barrett 2004; Swift et al. 2004;

Terwan et al. 2004). An agroecosystem is a bounded

system designed to produce food and fibre, yet it is also

part of a wider landscape at which scale a number of

ecosystem functions are important (Gliessman 2005).

For sustainability, interactions need to be developed

between agroecosystems and whole landscapes of other

farms and non-farmed or wild habitats (e.g. wetlands,

woods, riverine habitats), as well as social systems of

food procurement. Mosaic landscapes with a variety of

farmed and non-farmed habitats are known to be good

for birds as well as farms (Bignall & McCracken 1996;

Shennan et al. 2005; Woodhouse et al. 2005; Wade et al.
in press).
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There are several types of resource-conserving
technologies and practices that can be used to improve
the stocks and use of natural capital in and around
agroecosystems. These are:

(i) IPM, which uses ecosystem resilience and
diversity for pest, disease and weed control,
and seeks only to use pesticides when other
options are ineffective (e.g. Lewis et al. 1997;
Gallagher et al. 2005; Herren et al. 2005;
Hassanali et al. 2007; Bale et al. in press).

(ii) Integrated nutrient management, which seeks both
to balance the need to fix nitrogen within farm
systems with the need to import inorganic and
organic sources of nutrients and to reduce
nutrient losses through erosion control
(Crews & Peoples 2004; Leach et al. 2004;
Goulding et al. 2007; Moss 2007).

(iii) Conservation tillage, which reduces the amount
of tillage, sometime to zero, so that soil can be
conserved and available moisture used more
efficiently (Petersen et al. 2000; Holland 2004;
Hobbs et al. 2007).

(iv) Agroforestry, which incorporates multifunctional
trees into agricultural systems and collective
management of nearby forest resources (Leakey
et al. 2005).

(v) Aquaculture, which incorporates fish, shrimps
and other aquatic resources into farm systems,
such as into irrigated rice fields and fish ponds,
and so leads to increases in protein production
(Bunting in press).

(vi) Water harvesting in dryland areas, which means
formerly abandoned and degraded lands can be
cultivated, and additional crops can be grown on
small patches of irrigated land owing to better
rain water retention (Pretty 1995; Reij 1996),
and improving water productivity of crops
(Morison et al. 2007).

(vii) Livestock integration into farming systems, such
as dairy cattle, pigs and poultry, including using
zero-grazing cut and carry systems (Altieri
1995; Wilkins 2007).

Many of these individual technologies are also
multifunctional (Pretty 1995; Lewis et al. 1997). This
1–20
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implies that their adoption should mean favourable
changes in several components of the farming system at
the same time. For example, hedgerows and alley crops
encourage predators and act as windbreaks, thus
reducing soil erosion. Legumes introduced into
rotations fix nitrogen, and also act as a break crop to
prevent carry-over of pests and diseases. Grass contour
strips slow surface-water run-off, encourage percola-
tion to groundwater and can be a source of fodder for
livestock. Catch crops prevent soil erosion and leaching
during critical periods, and can also be ploughed in as a
green manure. The incorporation of green manures not
only provides a readily available source of nutrients for
the growing crop but also increases soil organic matter
and hence water-retentive capacity, further reducing
susceptibility to erosion.

Although many resource-conserving technologies
and practices are currently being used, the total number
of farmers using them worldwide is still relatively small.
This is because their adoption is not a costless process
for farmers. They cannot simply cut their existing use of
fertilizer or pesticides and hope to maintain outputs,
thus making operations more profitable. They also
cannot simply introduce a new productive element into
their farming systems and hope it would succeed. These
transition costs arise for several reasons. Farmers
must first invest in learning (Orr 1992; Röling &
Wagermakers 1997; Bentley et al. 2003; Lieblin et al.
2004; Bawden 2005; Chambers 2005). As recent and
current policies have tended to promote specialized,
non-adaptive systems with a lower innovation capacity,
farmers have to spend time learning about a greater
diversity of practices and measures (Gallagher et al.
2005; Kesevan & Swaminathan in press). Lack of
information and management skills is, therefore, a
major barrier to the adoption of sustainable agriculture.
During the transition period, farmers must experiment
more and thus incur the costs of making mistakes as
well as of acquiring new knowledge and information.

The on-farm biological processes that make
sustainable agroecosystems productive also take time
to become established (Firbank et al. in press;
Kibblewhite et al. in press; Wade et al. in press).
These include the rebuilding of depleted natural
buffers of predator stocks and wild host plants;
increasing the levels of nutrients; developing and
exploiting microenvironments and positive interactions
between them; and the establishment and growth of
trees. These higher variable and capital investment
costs must be incurred before returns increase.
Examples include for labour in construction of soil
and water conservation measures; planting of trees and
hedgerows; pest and predator monitoring and manage-
ment; fencing of paddocks; the establishment of
zero-grazing units; and purchase of new technologies,
such as manure storage equipment or global position-
ing systems for tractors.

It has also been argued that farmers adopting more
sustainable agroecosystems are internalizing many of
the agricultural externalities associated with intensive
farming and hence could be compensated for effec-
tively providing environmental goods and services.
Providing such compensation or incentives would be
likely to increase the adoption of resource conserving
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technologies (Dobbs & Pretty 2004). Nonetheless,
periods of lower yields seem to be more apparent
during conversions of industrialized agroecosystems.
There is growing evidence to suggest that most pre-
industrial and modernized farming systems in devel-
oping countries can make rapid transitions to both
sustainable and productive farming.
6. EFFECTS OF SUSTAINABLE AGRICULTURE
ON YIELDS
One persistent question regarding the potential benefits
of more sustainable agroecosystems centres on pro-
ductivity trade-offs. If environmental goods and
services are to be protected or improved, what then
happens to productivity? If it falls, then more land will
be required to produce the same amount of food, thus
resulting in further losses of natural capital (Green et al.
2005). As indicated earlier, the challenge is to seek
sustainable intensification of all resources in order to
improve food production. In industrialized farming
systems, this has proven impossible to do with organic
production systems, as food productivity is lower for
both crop and livestock systems (Lampkin & Padel
1994; Caporali et al. 2003). Nonetheless, there are now
some 3 Mha of agricultural land in Europe managed
with certified organic practices. Some have led to lower
energy use (though lower yields too), others to better
nutrient retention and some greater nutrient losses
(Dalgaard et al. 1998, 2002; Løes & Øgaard 2003;
Gosling & Shepherd 2004), and some to greater labour
absorption (Morison et al. 2005; Pretty et al. 2006).

Many other farmers have adopted integrated farming
practices, which represent a step or several steps towards
sustainability. What has become increasingly clear is that
many modern farming systems are wasteful, as integrated
farmers have found they can cut down many purchased
inputs without losing out on profitability (EA 2005).
Some of these cuts in use are substantial, others are
relatively small. By adopting better targeting and
precision methods, there is less wastage and more benefit
to the environment. They can then make greater cuts in
input use once they substitute some regenerative
technologies for external inputs, such as legumes for
inorganic fertilizers or predators for pesticides. Finally,
they can replace some or all external inputs entirely over
time once they have learned their way into a new type of
farming characterized by new goals and technologies
(Pretty & Ward 2001).

However, it is in developing countries that some of
the most significant progress towards sustainable
agroecosystems has been made in the past decade
(Uphoff 2002; McNeely & Scherr 2003; Pretty et al.
2003b). The largest study comprised the analysis of
286 projects in 57 countries (Pretty et al. 2006). This
involved the use of both questionnaires and published
reports by projects to assess changes over time. As in
earlier research (Pretty et al. 2003b), data were
triangulated from several sources and cross-checked
by external reviewers and regional experts. The study
involved analysis of projects sampled once in time
(nZ218) and those sampled twice over a 4-year period
(nZ68). Not all proposed cases were accepted for the
dataset and rejections were based on a strict set of
0



Table 3. Summary of adoption and impact of agricultural sustainability technologies and practices on 286 projects in 57
countries.

FAO farm system categorya
no. of farmers
adopting

no. of hectares
under sustainable
agriculture

average % increase
in crop yieldsb

smallholder irrigated 177 287 357 940 129.8 (G21.5)
wetland rice 8 711 236 7 007 564 22.3 (G2.8)
smallholder rainfed humid 1 704 958 1 081 071 102.2 (G9.0)
smallholder rainfed highland 401 699 725 535 107.3 (G14.7)
smallholder rainfed dry/cold 604 804 737 896 99.2 (G12.5)
dualistic mixed 537 311 26 846 750 76.5 (G12.6)
coastal artisanal 220 000 160 000 62.0 (G20.0)
urban-based and kitchen garden 207 479 36 147 146.0 (G32.9)
all projects 12 564 774 36 952 903 79.2 (G4.5)

a Farm categories from Dixon et al. (2001).
b Yield data from 360 crop-project combinations; reported as % increase (thus a 100% increase is a doubling of yields). Standard errors in
brackets.
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Figure 5. Histogram of change in crop yield after or
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(nZ360, mean Z1.79, s.d.Z0.91, medianZ1.50, geometric
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criteria. As this was a purposive sample of ‘best
practice’ initiatives, the findings are not representative
of all developing country farms.

Table 3 contains a summary of the location and
extent of the 286 agricultural sustainability projects
across the eight categories of FAO farming systems
(Dixon et al. 2001) in the 57 countries. In all, some
12.6 million farmers on 37 Mha were engaged in
transitions towards agricultural sustainability in these
286 projects. This is just over 3% of the total cultivated
area (1.136 Mha) in developing countries. The largest
number of farmers was in wetland rice-based systems,
mainly in Asia (category 2), and the largest area was in
dualistic mixed systems, mainly in southern Latin
America (category 6). This study showed that
agricultural sustainability was spreading to more farm-
ers and hectares. In the 68 randomly re-sampled
projects from the original study, there was a 54%
increase over the 4 years in the number of farmers and
45% in the number of hectares. These resurveyed
projects comprised 60% of the farmers and 44% of the
hectares in the original sample of 208 projects.

For the 360 reliable yield comparisons from 198
projects, the mean relative yield increase was 79%
across the very wide variety of systems and crop types.
However, there was a widespread in results (figure 5).
While 25% of projects reported relative yields greater
than 2.0 (i.e. 100% increase), half of all the projects
had yield increases between 18 and 100%. The
geometric mean is a better indicator of the average for
such data with a positive skew, but this still shows a
64% increase in yield. However, the average hides large
and statistically significant differences between the
main crops (figure 6a,b). In nearly all cases, there was
an increase in yield with the project. Only in rice there
were three reports where yields decreased, and the
increase in rice was the lowest (meanZ1.35), although
it constituted a third of all the crop data. Cotton
showed a similarly small mean yield increase.

These sustainable agroecosystems also have positive
side effects, helping to build natural capital, strengthen
communities (social capital) and develop human
capacities (Ostrom 1990; Pretty 2003). Examples of
positive side effects recently recorded in various
developing countries include:
RSTB 20072163—25/6/2007—21:06—THIAGU—278760—XML RSB – pp.
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— improvements to natural capital, including increased

water retention in soils, improvements in water table

(with more drinking water in the dry season),

reduced soil erosion combined with improved

organic matter in soils, leading to better carbon

sequestration and increased agrobiodiversity

— improvements to social capital, including more and

stronger social organizations at local level, new rules

and norms for managing collective natural resources

and better connectedness to external policy insti-

tutions

— improvements to human capital, including more local

capacity to experiment and solve own problems,

reduced incidence of malaria in rice-fish zones,

increased self-esteem in formerly marginalized

groups, increased status of women, better child

health and nutrition, especially in dry seasons, and

reversed migration and more local employment.

What we do not know, however, is the full economic

benefits of these spin-offs. In many industrialized

countries, agriculture is now assumed to contribute

very little to GDP, leading many commentators to
1–20
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Figure 7. (a) Association between pesticide use and crop
yields (data from 80 crop combinations, 62 projects, 26
countries). (b) Changes in pesticide use and yields in 62
projects (A: nZ10; C: nZ5; D: nZ47).
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assume that agriculture is not important for moder-
nized economies (NRC 2000). But such a conclusion is
a function of the fact that very few measures are being
made of the positive side effects of agriculture (MEA
2005). In poor countries, where financial support is
limited and markets weak, then people rely even more
on the value they can derive from the natural
environment and from working together to achieve
collective outcomes.
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7. EFFECTS OF SUSTAINABLE AGRICULTURE
ON PESTICIDE USE AND YIELDS
Recent IPM programmes, particularly in developing
countries, are beginning to show how pesticide use can
be reduced and pest management practices can be
modified without yield penalties (Brethour & Weerskink
2001; Wilson & Tisdell 2001; Gallagher et al. 2005;
Herren et al. 2005; Pretty & Waibel 2005; Hassanali
et al. 2007). In principle, there are four possible
trajectories of impact if IPM is introduced:

(i) pesticide use and yields increase (A),
(ii) pesticide use increases, but yields decline (B),
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(iii) both pesticide use and yields fall (C) and

(iv) pesticide use declines, but yields increase (D).

The assumption in modern agriculture is that

pesticide use and yields are positively correlated. For

IPM, the trajectory moving into sector A is therefore

unlikely but not impossible, for example in low-input

systems. What is expected is a move into sector C. While

a change into sector B would be against economic

rationale, farmers are unlikely to adopt IPM if their

profits would be lowered. A shift into sector D would

indicate that current pesticide use has negative yield

effects or that the amount saved from pesticides is

reallocated to other yield-increasing inputs. This could

be possible with excessive use of herbicides or when

pesticides cause outbreaks of secondary pests, such as

observed with the brown plant hopper in rice (Kenmore

et al. 1984).

Figure 7a,b shows data from 62 IPM initiatives in 26

developing and industrialized countries (Australia,

Bangladesh, China, Cuba, Ecuador, Egypt, Germany,

Honduras, India, Indonesia, Japan, Kenya, Laos, Nepal,

Netherlands, Pakistan, Philippines, Senegal, Sri Lanka,

Switzerland, Tanzania, Thailand, UK, USA, Vietnam

and Zimbabwe; Pretty & Waibel 2005). The 62 IPM

initiatives have some 5.4 million farm households on

25.3 Mha. The evidence on pesticide use is derived from

data on both the number of sprays per hectare and the

amount of active ingredient used per hectare. This

analysis does not include recent evidence on the effect of

some genetically modified crops, some of which result in
0
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Table 4. Mechanisms for increasing carbon sinks and
reducing CO2 and other greenhouse gas emissions in
agricultural systems. (Adapted from Pretty et al. (2002) and
Smith et al. (in press).)

Mechanism A. Increase carbon sinks in soil organic matter and
above-ground biomass
replace inversion ploughing with conservation- and zero-
tillage systems
adopt mixed rotations with cover crops and green manures
to increase biomass additions to soil
adopt agroforestry in cropping systems to increase above-
ground standing biomass
minimize summer fallows and periods with no ground
cover to maintain soil organic matter stocks
use soil conservation measures to avoid soil erosion and
loss of soil organic matter
apply composts and manures to increase soil organic
matter stocks
improve pasture/rangelands through grazing, vegetation
and fire management both to reduce degradation and
increase soil organic matter
cultivate perennial grasses (60–80% of biomass below
ground) rather than annuals (20% below ground)
restore and protect agricultural wetlands
convert marginal agricultural land to woodlands to increase
standing biomass of carbon

Mechanism B. Reduce direct and indirect energy use to avoid
greenhouse gas emissions (CO2,CH4 and N2O)
conserve fuel and reduce machinery use to avoid fossil fuel
consumption
use conservation- or zero-tillage to reduce CO2 emissions
from soils
adopt grass-based grazing systems to reduce methane
emissions from ruminant livestock
use composting to reduce manure methane emissions
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reductions in the use of herbicides (Champion et al.
2003) and pesticides (Nuffield Council on Bioethics
2004), and some of which have led to increases
(Benbrook 2003).

There is only one sector B case reported in recent
literature (Feder et al. 2004). Such a case has recently
been reported from Java for rice farmers. The cases in
sector C, where yields fall slightly while pesticide use
falls dramatically, are mainly cereal-farming systems in
Europe, where yields typically fall to some 80% of
current levels while pesticide use is reduced to 10–90%
of current levels (Röling & Wagemakers 1997; Pretty
1998). Sector A contains 10 projects where total
pesticide use has indeed increased in the course of
IPM introduction. These are mainly in zero-tillage and
conservation agriculture systems, where reduced tillage
creates substantial benefits for soil health and reduced
off-site pollution and flooding costs. These systems
usually require increased use of herbicides for weed
control (de Freitas 1999), though there are some
examples of organic zero-tillage systems (Petersen
et al. 2000). Over 60% of the projects are in category
D where pesticide use declines and yields increase.
While pesticide reduction is to be expected, as farmers
substitute pesticides by information, yield increase
induced by IPM is a more complex issue. It is probable,
for example, that farmers who receive good quality field
training will not only improve their pest management
skills but also become more efficient in other agronomic
practices such as water, soil and nutrient management.
They can also invest some of the cash saved from
pesticides in other inputs such as higher quality seeds
and inorganic fertilizers.
substitute biofuel for fossil fuel consumption
reduce the use of inorganic N fertilizers (as manufacturing
is highly energy intensive), and adopt targeted- and slow-
release fertilizers
use IPM to reduce pesticide use (avoid indirect energy
consumption)

Mechanism C. Increase biomass-based renewable energy pro-
duction to avoid carbon emissions
cultivate annual crops for biofuel production such as
ethanol from maize and sugar cane
cultivate annual and perennial crops, such as grasses and
coppiced trees, for combustion and electricity generation,
with crops replanted each cycle for continued energy
production
use biogas digesters to produce methane, so substituting
for fossil fuel sources
use improved cookstoves to increase efficiency of biomass
fuels
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8. EFFECTS ON CARBON BALANCES
The 1997 Kyoto Protocol to the UN Framework
Convention on Climate Change established an inter-
national policy context for the reduction of carbon
emissions and increases in carbon sinks in order to
address the global challenge of anthropogenic
interference with the climate system. It is clear that
both emission reductions and sink growth will be
necessary for mitigation of current climate change
trends (Watson et al. 2000; IPCC 2001; Royal Society
2001; Swingland 2003; Oelbermann et al. 2004; Hobbs
et al. 2007; Lal in press; Smith et al. in press). A source is
any process or activity that releases a greenhouse gas, or
aerosol or a precursor of a greenhouse gas into the
atmosphere, whereas a sink is such mechanism that
removes these from the atmosphere. Carbon sequestra-
tion is defined as the capture and secure storage of
carbon that would otherwise be emitted to or remain in
the atmosphere. Agricultural systems emit carbon
through the direct use of fossil fuels in food production,
the indirect use of embodied energy in inputs that are
energy intensive to manufacture, and the cultivation of
soils and/or soil erosion resulting in the loss of soil
organic matter. Agriculture also contributes to climate
change through the emissions of methane from irrigated
rice systems and ruminant livestock. The direct effects of
land use and land-use change (including forest loss)
have led to a net emission of 1.7 Gt C yrK1 in the 1980s
RSTB 20072163—25/6/2007—21:07—THIAGU—278760—XML RSB – pp.
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and 1.6 Gt C yrK1 in the 1990s (Watson et al. 2000;
Bellamy et al. 2005).

On the other hand, agriculture is also an accumulator
of carbon when organic matter is accumulated in the
soil, and when above-ground biomass acts either as a
permanent sink or is used as an energy source that
substitutes for fossil fuels and thus avoids carbon
emissions. There are 3 main mechanisms and 21
technical options (table 4) by which positive actions
can be taken by farmers by:

(i) increasing carbon sinks in soil organic matter and
above-ground biomass,
1–20



Table 5. Summary of potential carbon sequestered in soils and above-ground biomass in the 286 projects. (Note. Gs.e. in
brackets.)

FAO farm system category
carbon sequestered per
hectare (t C haK1 yrK1)

total carbon sequestered
(Mt C yrK1)

carbon sequestered per
household (t C yrK1)

smallholder irrigated 0.15 (G0.012) 0.011 0.06
wetland rice 0.34 (G0.035) 2.53 0.29
smallholder rainfed humid 0.46 (G0.034) 0.34 0.20
smallholder rainfed highland 0.36 (G0.022) 0.23 0.56
smallholder rainfed dry/cold 0.26 (G0.035) 0.20 0.32
dualistic mixed 0.32 (G0.023) 8.03 14.95
coastal artisanal 0.20 (G0.001) 0.032 0.15
urban-based and kitchen garden 0.24 (G0.061) 0.015 0.07
total 0.35 (G0.016) 11.38 0.91
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(ii) avoiding carbon dioxide or other greenhouse gas
emissions from farms by reducing direct and
indirect energy use, and

(iii) increasing renewable energy production from
biomass that either substitutes for consumption
of fossil fuels or replacing inefficient burning of
fuelwood or crop residues, and so avoids carbon
emissions.

The potential annual contributions being made in the
286 projects (Pretty et al. 2006) to carbon sink increases
in soils and trees were calculated, using an established
methodology (Pretty et al. 2002; table 5). As the focus is
on what sustainable methods can do to increase
quantities of soil and above-ground carbon, no account
was taken of existing stocks of carbon. Soil carbon
sequestration is corrected for climate, as rates are higher
in humid when compared with dry zones and generally
higher in temperate than tropical areas.

These projects were potentially sequestering
11.4 Mt C yrK1 on 37 Mha. The average gain was
0.35 t C haK1 yrK1, with an average per household
gain of 0.91 t C yrK1. The per hectare gains vary from
0.15 t C haK1 yrK1 for smallholder irrigated systems
(category 1) to 0.46 t C haK1 yrK1 for category three
systems. For most systems, per households gains were in
the range 0.05–0.5 t C yrK1, with the much larger farms
of southern Latin America using zero-tillage and
conservation agriculture achieving the most at
14.9 t C yrK1 (Hobbs et al. 2007). Such gains in carbon
may offer new opportunities for income generation
under carbon trading schemes (Swingland 2003).
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9. THE WIDER POLICY CONTEXT
Three things are now clear from evidence on the recent
spread of agricultural sustainability:

(i) Many technologies and social processes for local
scale adoption of more sustainable agricultural
systems are increasingly well tested and estab-
lished,

(ii) The social and institutional conditions for spread
are less well understood, but have been estab-
lished in several contexts, leading to more rapid
spread during the 1990s–early 2000s, and

(iii) The political conditions for the emergence of
supportive policies are the least well established,
with only a few examples of positive progress.
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As indicated above, agricultural sustainability can

contribute to increased food production, as well as makes

a positive impact on environmental goods and services.

Clearly, much can be done with existing resources, but a

wider transition towards a more sustainable agriculture

will not occur without some external support and money.

There are always transition costs in developing new or

adapting old technologies, in learning to work together

and in breaking free from existing patterns of thought

and practice. It also costs time and money to rebuild

depleted natural and social capital.

Most agricultural sustainability improvements occur-

ring in the 1990s and early 2000s appear to have arisen

despite existing national and institutional policies, rather

than owing to them (Dasgupta 1998). Although almost

every country would now say it supports the idea of

agricultural sustainability, the evidence points towards

only patchy reforms. Only three countries have given

explicit national support for sustainable agriculture:

Cuba has a national policy for alternative agriculture;

Switzerland has three tiers of support to encourage

environmental services from agriculture and rural

development; and Bhutan has a national environmental

policy coordinated across all sectors (Funes et al. 2002;

Pretty 2002; Herzog et al. 2005; Zhao et al. in press).

Several countries have given subregional support to

agricultural sustainability, such as the states of Santa

Caterina, Paraná and Rio Grande do Sul in southern

Brazil supporting zero-tillage, catchment management

and rural agribusiness development and some states in

India supporting participatory watershed and irrigation

management. A larger number of countries have

reformed parts of agricultural policies, such as China’s

support for integrated ecological demonstration villages,

Kenya’s catchment approach to soil conservation,

Indonesia’s ban on pesticides and programme for farmer

field schools, Bolivia’s regional integration of agricul-

tural and rural policies, Sweden’s support for organic

agriculture, Burkina Faso’s land policy and Sri Lanka

and the Philippines’ stipulation that water users’ groups

be formed to manage irrigation systems. In Europe and

North America, a number of agri-environmental

schemes have been implemented in the past decade

(Dobbs & Pretty 2004), though their success has been

patchy (Kleijn et al. 2001; Marggraf 2003; Carey et al.

2005; Feehan et al. 2005; Herzog et al. 2005;

Meyer-Aurich 2005).
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A good example of a carefully designed and

integrated programme comes from China (Li Wenhua
2001). In March 1994, the government published a

White Paper to set out its plan for implementation of
Agenda 21 and put forward ecological farming, known

as Shengtai Nongye or agroecological engineering, as the
approach to achieve sustainability in agriculture. Pilot

projects have been established in 2000 townships and
villages spread across 150 counties. Policy for these ‘eco-

counties’ is organized through a cross-ministry partner-
ship, which uses a variety of incentives to encourage

adoption of diverse production systems to replace
monocultures. These include subsidies and loans,

technical assistance, tax exemptions and deductions,

security of land tenure, marketing services and linkages
to research organizations. These eco-counties contain

some 12 Mha of land, approximately half of which is
cropland, and though only covering a relatively small

part of China’s total agricultural land, do illustrate what
is possible when policy is appropriately coordinated.

Many countries now have national policies that now
advocate export-led agricultural development. Access to

international markets is clearly important for poorer
countries, and successful competition for market share

can be a very significant source of foreign exchange.
However, this approach has some drawbacks: (i) poor

countries are in competition with one another for market
share, and so there is likely to be a downward pressure

on prices, which reduces returns over time unless
productivity continues to increase, (ii) markets for

agri-food products are fickle, and can be rapidly
undermined by alternative products or threats (e.g.

avian bird flu and the collapse of the Thai poultry
sector), (iii) distant markets are less sensitive to the

potential negative externalities of agricultural pro-

duction and are rarely pro-poor (with the exception of
fair-trade products and efforts by some food companies;

Smith in press), and (iv) smallholders have many
difficulties in accessing international markets and

market information.
More importantly, an export-led approach can seem

to ignore the in-country opportunities for agricultural
development focused on local and regional markets.

Agricultural policies with both sustainability and poverty
reduction aims should adopt a multi-track approach that

emphasizes five components: (i) small farmer develop-
ment linked to local markets, (ii) agri-business develop-

ment—both small businesses and export-led, (iii) agro-
processing and value-added activities to ensure that

returns are maximized in-country, (iv) urban agricul-
ture, as many urban people rely on small-scale urban

food production that rarely appears in national statistics,
and (v) livestock development to meet local increases in

demand for meat (predicted to increase as economies

become richer). In industrialized countries, however, it
is perverse subsidies that still promote harm to the

environment (Myers & Kent 2003), though agricultural
reforms are now putting into place systems that pay for

the provision of environmental services and the
development of multifunctional agriculture (Kenkel &

Manning 1999; Terwan et al. 2004; Shennan et al. 2005;
Scherr & McNeely 2007; Kesevan & Swaminathan in

press; Shennan in press).
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Like all major changes, transitions towards sustain-
ability can also provoke secondary problems. For
example, building a road near a forest can not only
help farmers reach food markets, but also aid illegal
timber extraction. If land has to be closed off to grazing
for rehabilitation, then people with no other source of
feed may have to sell their livestock; and if cropping
intensity increases or new lands are taken into
cultivation, then the burden of increased workloads
may fall particularly on women. Producers of current
agrochemical products are likely to suffer market losses
from a more limited role for their products. The increase
in assets that could come from sustainable livelihoods
based on sustainable agriculture may simply increase the
incentives for more powerful interests to take over. In
addition, with benefits weighted towards the future
while requiring current costs, this may leave poor
farmers unable to adopt novel technologies, while richer
farmers in industrialized countries are being paid to
make the changes (Lee 2005; Tripp in press).

New winners and losers will emerge with the
widespread adoption of sustainable agriculture. A
differentiated approach for agricultural policies will
thus become increasingly necessary if agroecosystems
are to become more productive while reducing negative
impacts on the environment, thus improving efficiency
(Dobbs & Pretty 2004; Lee 2005; Wilkins 2007). This
will require wider attention to exchange rate policies,
trade reforms, domestic agricultural prices, input
subsidies, labour market reforms, education and invest-
ment in schools, rural infrastructure, secure property
rights to water and land, development of institutions for
resource management and substantial investments in
agricultural research and extension. At the same time,
the environmental costs of transporting food are
increasing, and in some countries are greater than the
costs arising from food production on farms, suggesting
that sustainability priorities need to be set for whole food
chains (Pretty et al. 2005; Smith in press).

In this context, it is unclear whether progress towards
more sustainable agricultural systems will result in
enough food to meet the current food needs in
developing countries, let alone the future needs after
continued population growth (and changed consump-
tion patterns) and adoption of more urban and meat-
rich diets (Popkin 1998). But what is occurring should
be cause for cautious optimism, particularly as evidence
indicates that productivity can grow over time if natural,
social and human assets are accumulated.
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